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The Structure of the Algebra of Observables in the
Intermediate Situation of the e -Model
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We look at the action of the spin-1/2 operators of quantum mechanics on the
state of an entity in a physical way, and use this as a guideline to define the
operators of the intermediate situations of a general spin-1/2 measurement model
called the e -model. Then we test the possible linearity of the operators so
constructed.

1. INTRODUCTION

In the hidden measurement approach (Aerts, 1983, 1986, 1987) the

probabilities of quantum mechanics are explained as due to the presence of

fluctuations on the interaction between the measurement apparatus and the

entity under study. The approach was given this name because it considered
an experiment as a class of subexperiments (the hidden measurements),

parametrized by a real parameter and indistinguishable to the macroscopic

observer. The resulting probabilities through the averaging process over the

whole class of hidden measurements was shown to coincide with the quantum

probabilities. As an example, a model for the spin±1/2 experiments was
introduced, which was later generalized to include cases of arbitrary fluctua-

tions, going from maximal fluctuations to zero fluctuations, coinciding respec-

tively with quantum and classical mechanics. The amount of fluctuation was

parametrized by a real parameter e P [0,1], hence the name e -model (Aerts

et al., 1993a, b). By varying e over [0,1] intermediate cases were found,

which were neither quantum nor classical. To study these intermediate cases
a theory much more general than quantum mechanics was presented (Aerts,

1994; Aerts and Durt 1994a, b). The study was done in several different
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mathematical categories. The structure of the Piron lattice of properties (Piron,

1976) of the entity was found to be Boolean for the case with zero fluctuations

and pure quantum for the case of maximal fluctuations. For the intermediate
cases the lattice was neither Boolean nor quantum (Aerts and Durt, 1994a,

b). For the closures, a disappearing of the superposition principle during the

transition from quantum to classical was observed (Aerts and Durt, 1994a,

b), and for the intermediate cases it was proven that the Piron axioms to find

a representation of the entity in a general Hilbert space are violated. In the

category of the probability structures, a transition from Kolmogorovian to non-
Kolmogorovian was demonstrated and the intermediate cases were neither

Kolmogorovian nor quantum (D. Aerts, 1995; S. Aerts, 1996).

Here we will present the study of the intermediate situations of the e -

model in the category of the observables. The linear operators which are

used in quantum mechanics to describe the observables will be investigated

in a physical way to get a definition for the operators of the intermediate
situations.

2. THE e -MODEL

As the e -model has been introduced already in great detail (Aerts et al.,
1993a, b), we will only repeat the main characteristics of the model to make

this article self-contained. The physical entity S that we consider is a point

particle P on the surface sur f of a sphere with center O and radius 1, which

we will call the PoincareÂsphere. The unit vector u where the particle is

located on surf represents the state pv of the particle. With every unit vector

u an experiment e e
u is associated with a set of outcomes Oe

e
u 5 { 1 1, 2 1}

such that the entity in case of an outcome 1 1 ends up at u after the measure-

ment and at 2 u in case of an outcome 2 1. The probabilities with which

these outcomes occur for the entity in a state pv are denoted by P e ( pu | pv) for

the outcome 1 1 and by p e ( p 2 u | pv) for the outcome 2 1. The parameter e P
[0, 1]. The probabilities are given by:

1. e # v ? u: P e ( pu | pv) 5 1.

2. 2 e # v ? u # 1 e : P e ( pu | pv) 5 (1/2 e )(v ? u 1 e ).

3. v ? u # 2 e : P e ( pu | pv) 5 0.

P e ( p 2 u | pv) 5 1 2 P e ( pu | pv) for all three cases. For e 5 0, the experiment

e e
u gives for the entity on the equator an outcome 1 1 with probability 1/2

and an outcome 2 1 with probability 1/2. In the case e 5 1, the probabilities
coincide with the probabilities of a spin-1/2 entity in quantum mechanics,

such that the entity S can be described in a Hilbert space and the experiments

e e
u by the linear self-adjoint operators of that Hilbert space. When we vary

e over [0, 1], we get intermediate cases going from quantum ( e 5 1) to
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classical ( e 5 0). It has been proven that only for e 5 1 are the axioms to

derive a Hilbert space structure from the lattice of properties satisfied. Because

no Hilbert space structure is available for the intermediate cases, we need
other guidelines to study the e -model in the category of the operators, namely

averages of physical observables.

3. THE REPRESENTATION OF SPIN-1/2 STATES ON THE
POINCAREÂSPHERE

First we establish a correspondence between the points on the PoincareÂ

sphere surf and the eigenvectors of the spin-1/2 operators in the complex
space C2, in the following way. The mapping

SU: u 5 (sin u cos w , sin u sin w , cos u ) ® Su 5 1 cos u sin u e 2 i w

sin u e i w 2 cos u 2
maps a unit vector u on the spin-1/2 operator Su which has two orthogonal

eigenvectors that form a basis for the complex space C2, namely

su 1 5 1
cos

u
2

e 2 i w /2

sin
u
2

e i w /2 2 , su 2 5 1
2 sin

u
2

e 2 i w /2

cos
u
2

e i w /2 2
with eigenvalue 1 1 and 2 1, respectively. We can attribute the following

meaning to these eigenvectors: if the entity is in a state su+, we will find the

value 1 1 with certainty. The interpretation is then that on the PoincareÂsphere

the entity is in the state pu given by the point u. In short, we make a unit
vector u of surf correspond to an eigenvector su+ in C2.

This correspondence is one-to-one. On the PoincareÂsphere we have two

degrees of freedom: u and w . In the complex space C2 there are four: each

complex number can be written as the sum of its real part and its imaginary

part; but by demanding that the norm of the eigenvector is 1, and because

an eigenvector is defined up to an arbitrary constant (by the first requirement
of modulus 1) we have indeed a one-to-one correspondence between the

vector of unit length u and the set of eigenvectors of Su with eigenvalue 1 1

and norm 1.

4. THE SPIN-1/2 OPERATORS FOR THE INTERMEDIATE
SITUATIONS

4.1. How to Generalize Quantum Operators

Insofar as there is a connection between an element of the complex

space C2 and an element of the PoincareÂsphere, there exists a connection
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between the operators in the complex space C2 and the operators on the

PoincareÂsphere. Our guidelines will be: (1) that the averages of a physical

observable are independent of our description (thus independent of the fact
that we are describing it in the complex space C2 or on the PoincareÂsphere)

and (2) the connection that exists between the product in C2 and the scalar

product of vectors on the PoincareÂsphere. More precisely, the average S1( c w)

of an observable S1 when the entity is in a state c w P C2 is given by

S1( c w) 5 ^ S1( c w) | c w &

and by denoting the action of the spin operator on the PoincareÂsphere by

T1 [thus with S1( c w) P C2 is associated the vector T1(w) on the PoincareÂsphere]
we can write the following well-known connection between the products:

| ^ S1( c w) | c w & | 2 5
1 1 T1(w) ? w

2

These two formulas are sufficient to define and study the action on a state
w by the operator T e associated with a general spin-1/2 measurement e e

u on

the PoincareÂsphere. By the word ª actionº we mean that the square of the

average T e (w) of the operator T e on the PoincareÂsphere when the entity is

in a state pw is given per definition and in analogy with the quantum case by

T e (w)2 5
1 1 T e (w) ? w

2

The operator T1 corresponds to a rotation over p . This is so because the

formula shows us that the angle between T1(w) and w is twice the angle u
between w and u:

1 1 T1(w) ? w

2
5 T1(w)2 5 cos2 u 5

1 1 cos 2 u
2

because the average T1(w) is cos u in the quantum case. Moreover, also the

angle between T1(w) and u is u :

^ S1( c w) | c u & 5 ^ c w | S Á
1 ( c u) & 5 ^ c w | S1( c u) & 5 ^ c w | c u &

because S1 is self-adjoint and c u is an eigenvector of S1, with eigenvalue

1 1. Using elementary triangle inequalities on the sphere, we then see that

S1 is indeed a rotation over p .
Clearly these physical assumptions only make it possible to define the

angle g w between a vector w and its image T e (w). In general this means that

we only can say that T e (w) lies on a small circle on the PoincareÂsphere

centered around the axis [ 2 w, w] and making an angle g w with w. To define

our T e (w) unambiguously we will make the mathematical assumption that
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T e (w) makes the same angle u with u as w does. This is inspired by the fact

that in the quantum case we have that (T1)
2 5 idsurf. If we need the possibility

to get back from T e (w) to w by applying the operator a second time we have
to be aware of the fact that the action of T e on T e (w) depends on the angle

u T e (w) between T e (w) and u, and it is necessary that this angle is equal to the

angle u w between u and w, if we want that a same but opposite action

is possible.

4.2. Construction of the Operators for the Intermediate Situations

We will study the spin operator for the various values of e . For e 5 1
we have found that the action of the spin operator is that of a rotation of p .

Because, as mentioned earlier, the state space is in general not a Hilbert

space, we use the following correspondence:

1 1 T e (w) ? w

2
5 T e (w)2

The average T e (w) can be calculated by means of the given probabilities:

T e (w) 5 ( 1 1)P e ( pu | pw) 1 ( 2 1)P e ( p 2 u | pw)

So that we find that, if we make the assumption that T e (w) is of unit length,

we can calculate the angle g w between T e (w) and w:

1. If cos u $ e or cos u # 2 e , then cos g w 5 1.

2. If e $ cos u $ 2 e , then cos g w 5 (2cos2 u 2 e 2)/ e 2.

So a vector v on the equator of u will always be mapped onto its antipode

2 v, and u will always be mapped by T e onto itself. More precisely, if we
define the eigensets eig e

u( 1 1) and eig e
u( 2 1) as the sets eig e

u( 1 1) 5 {pv | e #
v ? u} and eig e

u( 2 1) 5 {pv | v ? u # 2 e }, then every vector of an eigenset

will be unchanged by the operator T e .

It is obvious that this indeed reduces to a rotation over p if e 5 1. This

is so because the formula shows us that the angle g w between T1(w) and w
is twice the angle u between w and u. Moreover, according to the mathematical
assumption, the angle between T1(w) and u is also u .

4.3. The Azimuthal Change

Since we have demanded that the angle between T e (w) and u should be
equal to the angle between w and u, we can look at what happens with the

other remaining degree of freedom and calculate the ª azimuthal angleº

w ( u , e ) between T e (w) and w, for w not in an aigenset, where it would be

unchanged by the operator, as mentioned earlier. By ª azimuthal angleº
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w ( u , e ) we mean the difference between the angles w 2 and w 1 if we write w
5 (sin u cos w 1, sin u sin w 1, cos u ) and T e (w) 5 (sin u cos sin w 2, sin u w 2,

cos u ). After a small calculation we find that

w ( u , e ) 5 2 arcsin F ! 1

sin2 u
2

cot2 u
e 2 G

And the differentiations of w ( u , e ) with respective to u and e are,

respectively,

d w ( u , e )

d u
5

2 | cos u |
cos u ! e 2 2 cos2 u

! 1 2 e 2

sin u

d w ( u , e )

d e
5

2 | cos u |
cos u ! e 2 2 cos2 u

cos u

e ! 1 2 e 2

For e 5 1 we see that d w ( u , e )/d u 5 0, " u P [0, p ], so that w ( u , 1) 5 c1

5 w ( p /2, 1) 5 p . The cases u 5 0 and u 5 p are irrelevant, since for them

w is undefined. For u 5 p /2 we find that d w ( u , e )/d e 5 0, " e P [0, 1], so
that w ( p /2, e ) 5 c2 5 w ( p /2, 1/2) 5 p . Moreover, for e 5 1 we also have

that w ( p /2, 1) 5 p . Thus w ( p /2, e ) 5 p , " e P [0, 1].

The troublesome case e 5 0 needs some special attention. There w ( u ,

e ) is undefined for u 5 p /2 [w lies in an eigenset if u w Þ p /2, so that T0(w)

5 w] and we will need some special considerations to decide whether we
should use the extrapolation of the eigensets (so that T0 5 id ), or whether

we should maintain the rotation over p for the equator as in all other cases

of e . A strong argument for the first choice would be that we then have a

linear operator just as in the quantum case; but this ª necessityº of linearity of

the operator is refuted by an earlier result which states that for the intermediate

situations we lose linearity of the operator (Aerts and D’ Hooghe, 1996).
Because the proof is very short, we will repeat it here briefly.

4.4. Linearity or Nonlinearity

For e 5 1 we see that the operator T e is linear:

T1 F w 1 v

! 2 G 5
T1(w) 1 T1(v)

! 2

This is trivial if we write the action of T1 in some more geometrical

way, making clear its linearity: T1(w) 5 2 w 1 2(u ? w)u.
For the intermediate cases (0 Þ e Þ 1) linearity is no longer available.

Theorem. T e is a linear operator if and only if e 5 1.
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Proof. We have to show that T e (w 1 v) 5 T e (w) 1 T e (v) for every v,
w on the sphere. If we suppose that T e is a linear operator on the PoincareÂ

sphere, we have that

T e (w) 1 T e (v)

! 2
5 T e F w 1 v

! 2 G
Let us take w 5 u and v an arbitrary vector on the equator of u. Then

T e (w) 5 w, and T e (v) 5 2 v, and we find that

T e (w) 1 T e (v)

! 2
5

w 2 v

! 2

We have now two possibilities for (w 1 v)/ ! 2

1. If (w 1 v)/ ! 2 is in an eigenset,

T e F w 1 v

! 2 G 5
w 1 v

! 2

and T e is clearly not linear.
2. (w 1 v)/ ! 2 is not in an eigenset. The angle u between (w 1 u)/ ! 2

and u is p /4. So we find

cos g (w 1 v)/ ! 2 5
2 cos2 u 2 e 2

e 2 5
1 2 e 2

e 2

On the other hand, we see that the angle g (w 1 v)/ ! 2 between (w 2 v)/ ! 2 and

(w 1 v)/ ! 2 is p /2 such that we also have that cos g (w 1 v)/ ! 2 5 0. This can

be the case if and only if e 5 1. Thus only in the quantum case do we find

that T e is linear.

4.5. Return to the Classical Case

Now we can return to the classical case. The average T0(w) for an

arbitrary w on the equator (w ? u 5 0) is given by

T0(w) 5 ( 1 1)P 0( pu | pw) 1 ( 2 1)P 0( p 2 u | pw) 5 ( 1 1)
1

2
1 ( 2 1)

1

2
5 0

Hence [1 1 T0(w) ? w]/2 5 0, and the angle g w between w and T0(w) is p .

We have two possibilities:

1. We define T0 as the identity for e 5 0, making an extrapolation of

the eigensets (the upper and lower open half-spheres). Making the eigensets

closed by defining the action of T0 on the equator as the identity, we recover
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a linear operator. But then the eigensets get mixed up for the unnecessary

property of linearity.

2. We define T0 as the identity on the whole sphere, except on the
equator, where it maps the points onto their antipodes. So there is no linearity

in the classical case, too. By making this choice we maintain our foregoing

guidelines and respect symmetry. Another reason is that for a state on the

equator we have an instability in the classical case: where the states of the

upper and the lower open half spheres have a predetermined outcome, only

a probability is given on the equator. So we choose for the classical case on
the equator the same action for the operator as in the quantum case, namely

a rotation over p , because their probabilities are the same.

5. CONCLUSION

We have constructed the set of operators for the intermediate situations

of the e -model and have shown that only for the case with maximal fluctua-

tions of the interaction between entity and measurement apparatus are the
operators linear on the PoincareÂsphere. This result suggested that we define

the action of the operator on the equator in the classical case as a rotation

over p .
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